

Reactive transport modeling of coupled concrete carbonation and drying

Olivier BILDSTEIN

FROM RESEARCH TO INDUSTRY

ConCarb2019 June 27. 2019

French Alternative Energies and Atomic Energy Commission - www.cea.fr

CEA OUTLINE PLAN

Context of the study

- Phenomenology and modeling parameters
- Modeling accelerated concrete carbonation experiments
- A benchmark exercice for atmospheric concrete carbonation
- Conclusion and perspectives

Deep geological storage of Intermediate Long Lived Waste (ILLW) ILLW cells, shafts (and seals) - ILLW disposal overpack

Atmospheric carbonation of concrete overpack during the operating period for :

- Bituminized waste
- Compacted metallic waste
- Organic waste

Phenomenology and

modeling parameters

French Alternative Energies and Atomic Energy Commission - www.cea.fr

cea

DRYING AND CARBONATION PROCESSES OF ILLW OVERPACK

PHENOMENOLOGY: CAPILLARY FLOW

- ✓ Flow law (generalized Darcy law): $F_{\beta} = -k \frac{k_{r\beta} \rho_{\beta}}{\mu_{\beta}} (\vec{\nabla} P_{\beta} \rho_{\beta} \vec{g})$
- ✓ Lowering of the dew point due to capillary effects (Kelvin equation in EOS4): $P_{cap}(h_r) = -\rho_w \frac{RT}{M} \ln(h_r(S_l))$
- ✓ Water relative permeability (Van Genuchten):

$$k_{rl}(S_r) = \sqrt{S_r} \left[1 - \left(1 - S_r^{\frac{1}{m}} \right)^m \right]^2 \qquad S_r = \frac{(S_l - S_{lr})}{(S_{ls} - S_{lr})}$$

- ✓ Gas relative permeability (Corey): $k_{rg} = (1 \hat{S})^2 (1 \hat{S}^2)$ $\hat{S} = \frac{(S_l S_{lr})}{(1 S_{lr} S_{or})}$
- Klinkenberg effect (gas flow at low pressure):

$$k_g = k_{\rm int} \left(1 - \frac{\Gamma}{p} \right) k_{rg}$$

PHENOMENOLOGY: DIFFUSION

✓ Gaseous diffusion: $d_{0,i,\beta}(P,T) = d_{0,i,\beta}(P_0,T_0) \frac{P_0}{P} \left[\frac{T+273,15}{273,15} \right]^{\theta}$

✓ CO₂ and other gases: $d_{0,i,\beta} = \frac{RT}{3\sqrt{2}\pi PNd^2} \sqrt{\frac{8RT}{\pi M}}$

✓ Aqueous diffusion: $d_{0,i,\beta} = d_{H_2O,29815K} \exp\left[\frac{E_a}{R}\left(\frac{1}{298,15} - \frac{1}{T}\right)\right]$

✓ Effective diffusion : $D_{i,\beta} = d_{0,i,\beta} \omega \tau_0 \tau_\beta$

✓ Tortuosity (Millington-Quirk): $\tau_0 \tau_\beta = \omega^a S_\beta^b$

PHENOMENOLOGY: DIFFUSION

✓ Gaseous diffusion: $d_{0,i,\beta}(P,T) = d_{0,i,\beta}(P_0,T_0) \frac{P_0}{P} \left[\frac{T + 273,15}{273,15} \right]^{\ell}$

✓ CO₂ and other gases: $d_{0,i,\beta} = \frac{RT}{3\sqrt{2}\pi PNd^2} \sqrt{\frac{8RT}{\pi M}}$

✓ Aqueous diffusion: $d_{0,i,\beta} = d_{H_2O,29815K} \exp\left[\frac{E_a}{R}\left(\frac{1}{298,15} - \frac{1}{T}\right)\right]$

 \checkmark Effective diffusion : $D_{i,\beta} = d_{0,i,\beta} \omega \tau_0 \tau_\beta$

V Tortuosity (Millington-Quirk): $\tau_0 \tau_\beta = \omega^a S_\beta^b$

1st MAJOR COUPLING EFFECT!!

Slia

SIMULATIONS CONFIGURATION

- 1D half section overpack wall (section = 11 cm)
- Carbonation on both sides
- ✓ Ventilation air at 25°C and 40% relative humidity
- Initial liquid water saturation assumed to be 0.8

cea

✓ different properties for concrete materials:

- High Performance Concrete (HPC)
- Intermediate Performance Concrete (IPC)
- Low Performance Concrete (LPC)

	HPC	IPC	LPC	
Porosity	0.08	0.12	0.16	
Intrinsic permeability to liquid (m ²)	1e-21	1e-19	1e-17	
Intrinsic permeability to gas (m ²)	1e-19	1e-17	1e-15	
Relative permeability m – SIr – SIs – Sgr	0.481 - 0.0 - 1.0 - 0.0	0.424 - 0.0 - 1.0 - 0.0	0.367 - 0.0 - 1.0 - 0.0	
Capillarity pressure m – P ₀ (MPa) – Pmax (MPa)	0.481 - 45 - 1500 0.424 - 15 - 1500 0.367 - 5 - 150		0.367 – 5 - 1500	
Molecular diffusion coefficient gaseous phase (m²/s) water	2.4e-05			
Molecular diffusion coefficient gaseous phase (m^2/s) CO ₂	1.6e-05			
Molecular diffusion coefficient in aqueous phase (m²/s)	1.9e-09			
Millington-Quirk a parameter				
Millington-Quirk b parameter	4.2			
Klinkenberg parameter (MPa)	0.45			

HPC chosen for the benchmarking exercise

DRYING RESULTS

using Toughreact code in EOS9 mode (Richards) and EOS4 mode (full multiphase)

CHEMICAL PARAMETERS SIMULATING CEM V CONCRETE

✓ Primary phases

Phase	Volume %
Calcite	72.12
Portlandite	5.73
CSH 1.6	13.76
Monocarboaluminate	2.26
Ettringite	3.60
Hydrotalcite	0.39
Hydrogarnet-Fe (C3FH6)	2.05

✓ Secondary phases

Phase type	Phases		
Oxides	Magnetite, Amorphous silica		
Hydroxides	Brucite, Gibbsite, Fe(OH) ₃		
Sheet silicates	Sepiolite		
Other silicates	CSH 1.2, CSH 0.8, Straetlingite, Katoite_Si		
Sulfates, chlorides, other salts	Gypsum, Anhydrite, Burkeite, Syngenite, Glaserite, Arcanite, Glauberite, Polyhalite		
Carbonates	Calcite, Nahcolite		
Other	Hydrotalcite-CO ₃ , Ettringite, Dawsonite		

✓ Kinetics of dissolution / precipitation

$$r_{n} = \pm k_{n} A_{n} \left| 1 - \Omega_{n}^{\theta} \right|^{\eta} \qquad k_{n}(T) = k_{298,15} \exp \left| \frac{-E_{a}}{R} \left(\frac{1}{T} - \frac{1}{298,15} \right) \right|$$

cea

CARBONATION RESULTS

 pH decrease, portlandite dissolution and calcite precipitation over a thickness of about 2 cm after 100 years (1 cm for HPC, 4 cm for LPC)

Cea

CARBONATION RESULTS

- Dissolution of CSH 1.6, ettringite, monocarboaluminate and hydrotalcite on 2 cm after 100 years
- Precipitation of CSH 1.2, CSH 0.8, straetlingite, amorphous silica and gypsum on the same thickness
- Precipitation of small amounts of sepiolite, gibbsite and katoïte-Si is also predicted

Modeling carbonation experiments : parameter calibration

French Alternative Energies and Atomic Energy Commission - www.cea.fr

MODELING ACCELERATED CARBONATION EXPERIMENTS

<u>Experimental conditions</u>: carbonation of CEM I cement paste at 20° C with pCO₂ = 0.5 bar; different experiments at constant RH = 33%, 54%, 63%, 70%, 80% (Drouet, 2010)

optimal carbonation (but not fully carbonated)

Coupled reaction-transport modeling with Toughreact (EOS4): 1D Cartesian – 30 mm divided into 40 cells for the cement paste, 1 extra cell for "atmosphere"

Experiments with a CEM cement paste

	CEM I			
Porosity		0.37	0	
Intrinsic permeability to liquid (m ²)	1e-19			
Intrinsic permeability to gas (m ²)	1e-17			
Relative permeability m – Slr – Sls - Sgr	0.424 - 0.0 - 1.0 - 0.0			
Capillarity pressure m – P ₀ (MPa) – Pmax (MPa)	0.424 - 15 - 1500			
Molecular diffusion coefficient in gaseous phase (m²/s)	2.4e-5			
Molecular diffusion coefficient in aqueous phase (m²/s)		1.9e-9		
Millington-Quirk a parameter		2		
Millington-Quirk b parameter	4.2			
Klinkenberg parameter (MPa)	0.45			

coupling equation (Millington-Quirk relationship):

$$D_{eff} = D_0 \omega^a S_l^b$$

CHEMICAL REACTION PARAMETERS (1)

✓ Primary phases

Phase	Volume %
Calcite	1.4
Portlandite	24.3
CSH 1.6	55.4
Monocarboaluminate	7.0
Ettringite	11.9

✓ Secondary phases

Phase type	Phases
Oxides	Magnetite, Amorphous silica
Hydroxides	Brucite, Gibbsite, Fe(OH) ₃
Sheet silicates	Sepiolite
Other silicates	CSH 1.2, CSH 0.8, Straetlingite, Katoite_Si
Sulfates, chlorides, other salts	Gypsum, Anhydrite, Burkeite, Syngenite, Glaserite, Arcanite, Glauberite, Polyhalite
Carbonates	Calcite, Nahcolite
Other	Hydrotalcite-CO ₃ , Ettringite, Dawsonite

✓ Kinetics of dissolution / precipitation

$$r_n = \pm k_n A_n \left[1 - \Omega_n^{\theta} \right]^{\eta} \qquad k_n(T) = k_{298,15} \exp \left[\frac{-E_a}{R} \left(\frac{1}{T} - \frac{1}{298,15} \right) \right]$$

Primary and Secondary phases kinetics parameters

Phase	Kinétic Constant (298.15 K)	Activation Energy (kJ.mol ⁻¹)	Specific Surface (m ² .g ⁻¹)	
C₃FH ₆	1 10 ⁻¹²	30	1	
Calcite	1.6 10 ⁻⁶	23.4	1	
CSH 0.8	1.6 10 ⁻⁹	50	1	
CSH 1.2	1.6 10 ⁻⁹	50	1	
CSH 1.6	1.6 10 ⁻⁹	30	1	
Ettringite	1.6 10 ⁻⁹	30	1	
Gibbsite_am	1.6 10 ⁻⁹	30	1	
Gypsum	1.6 10 ⁻⁵	20	1	
Hydrotalcite	1.6 10 ⁻⁹	30	1	
Iron Hydroxyde	1.6 10 ⁻⁸	30	10	
Monocarboaluminate	1.6 10 ⁻⁹	10	, 1°	
Portlandite	1.6 10 ⁻⁸	20	1	
Sépiolite	1.6 10 ⁻¹²	50	10	
Amorphous SiO ₂	1.6 10 ⁻⁹	30	1	
Straetlingite	1.6 10 ⁻⁹	50	1	

we added a coupling equation : chemical reactivity coefficient R_s

$$r_n = R_s r_n$$

 $0 \le R_s(RH) \le 1$

DIRECT CARBONATION MODELING RESULTS (MANUAL FITTING)

✓ calcite and portlandite profiles at 20 °C with
 k(CH) × 1.8 − k(CSH 1.6) × 0.1 − MQ parameters a = 2.6 and b = 5.4
 R_s = 0.10 - 0.70 - 0.95 - 1.00 (resp. for 33% - 54% - 70% - 80%RH)

 results are not completely satisfactory : carbonation fronts and effect of liquid saturation are not correctly predicted

- use a kriging or Gauss processes (GP) metamodel to approximate the results of the numerical model (building an interpolated response surface)
- perform a "large" number of simulations (600) to build a "learning base" in a specified domain of variation for selected "uncertain" parameters (with uniform law)

Input parameters Minimal Maxim values value	nal Reference es values
log k portlandite -8.5 -6	-4.5
log k CSH 1.6 -11 -7	-8.8
log k ettringite -11 -7	-8.8
Millington-Quirk a 1 3	2
Millington-Quirk b 2.1 6.3	4.2
Reactivity coefficient R _s 0.3 1	1

RESULTS OF THE GP METAMODEL

the set of parameters are sampled using space-filling design (optimized LHS* method) which enables to efficiently explore the variation domain of parameters (*Latin Hypercube Sampling) 33%RH, 80%RH

INVERSE MODELING TO FIT PARAMETERS

 \checkmark

GP metamodels are used to determine the optimal set of parameters that matches the experimental results (minimization of an objective function)

$\ensuremath{\textcircled{\sc b}}$ GP metamodel predictions are quite good !

⊗ Toughreact results are "less" satisfactory

	Parameters	optimized value	reference value
X ₁	log k portlandite	-7,41	-7,8
X ₂	log k CSH 1.6	-8,71	-8,8
X ₃	log k ettringite	-10,64	-8,8
X_4	Millington-Quirk a	2,69	2
X_5	Millington-Quirk b	6,43	4,2
X_6	Réactivité HR 54%	0,40	1
X_6	Réactivité HR 63%	0,33	1
X_6	Réactivité HR 70%	0,33	1

SUMMARY OF CALIBRATION RESULTS

the global sensitivity analysis shows that:

- the kinetics of portlandite is a key parameter
- some parameters may play a role when interacting with others (secondary influence), e.g. diffusion parameters with portlandite or CSH1.6 dissolution kinetics
- the reactivity parameter is not very influential (counterintuitive result!)

Modeling concrete carbonation : a benchmarking exercise

French Alternative Energies and Atomic Energy Commission - www.cea.fr

BENCHMARK : GEOMETRY AND COMPONENTS

1D Cartesian – 5.5 cm divided in 11 cells (5 mm) for HPC 1 extra cell for "atmosphere"

<u>Full multiphase codes</u> Toughreact (CEA + T. Xu, JLU) HYTEC (in progress) Drying with Richards' equation HYTEC (N. Seigneur, Mines Paristech) Crunchflow (CEA + C. Steefel, LBNL) PFLOTRAN (P. Alt-Epping, Uni Bern)

Components :

- 1. drying process
- 2. carbonation at constant liquid saturation
 - a. CH + calcite
 - b. Complete mineralogy
- coupled drying and carbonation
 a. CH + calcite
 - b. Complete mineralogy

CHEMICAL REACTION PARAMETERS (1)

✓ Primary phases

Phase	Volume %
Calcite	1.4
Portlandite	24.3
CSH 1.6	55.4
Monocarboaluminate	7.0
Ettringite	11.9

✓ Secondary phases

Phase type	Phases
Oxides	Magnetite, Amorphous silica
Hydroxides	Brucite, Gibbsite, Fe(OH) ₃
Sheet silicates	Sepiolite
Other silicates	CSH 1.2, CSH 0.8, Straetlingite, Katoite_Si
Sulfates, chlorides, other salts	Gypsum, Anhydrite, Burkeite, Syngenite, Glaserite, Arcanite, Glauberite, Polyhalite
Carbonates	Calcite, Nahcolite
Other	Hydrotalcite-CO ₃ , Ettringite, Dawsonite

✓ Kinetics of dissolution / precipitation

$$r_n = \pm k_n A_n \left[1 - \Omega_n^{\theta} \right]^{\eta} \qquad k_n(T) = k_{298,15} \exp \left[\frac{-E_a}{R} \left(\frac{1}{T} - \frac{1}{298,15} \right) \right]$$

BENCHMARK : COMPONENT 1: DRYING RESULTS

TOUGH2 - Full multiphase (EOS4) TOUGH2 - Richards (EOS9) FLOTRAN - PFLOTRAN

→ OK to use Richards' equation for benchmarking exercise

BENCHMARK : COMPONENT 2: REACTION TRANSPORT RESULTS AT CONSTANT SL

Making sure the same effective diffusion coefficient is used...

coupling equation (Millington-Quirk relationship):

$$D_{eff} = D_0 \omega^a S_l^b$$

For Crunchflow, b = 3.2 has to be used (instead of b = 4.2 for Toughreact)

BENCHMARK : COMPONENT 2A: PORTLANDITE CARBONATION AT CONSTANT S_L

BENCHMARK : COMPONENT 2A: PORTLANDITE CARBONATION AT CONSTANT S_L

Portlandite and Calcite only

Some discrepancies are observed in this simplified case...

BENCHMARK : COMPONENT 2B: CONCRETE CARBONATION AT CONSTANT ${\rm S}_{\rm L}$

Same mineral paragenesis but timing not exactly the same for all codes

BENCHMARK : COMPONENT 2B: CONCRETE CARBONATION AT CONSTANT ${\rm S_L}$

0,04 TOUGHREACT sulfates CRUNCH 0,04 MIN3P × ···· HYTEC ettringite 0.03 straetlingite Volume fraction 0,03 0,02 monocarbo-0,02 aluminate gypsum 0,01 0,01 0,00 10 30 50 60 0 20 40 70 80 90 100 Time (years)

Evolution of minerals at x = 2.5 mm

Precipitation of gypsum in the simulation with Crunchflow and Hytec

BENCHMARK : COMPONENT 2B: CONCRETE CARBONATION AT CONSTANT ${\rm S_L}$

Evolution of minerals at x = 2.5 mm

Dawsonite does not precipitate with Crunchflow and Hytec Straetlingite more persistent with Crunchflow

CONCRETE CARBONATION BENCHMARK SUMMARY

- Concrete carbonation benchmark exercise
 - differences between codes do not seem to be linked to the grid size or coupling method
 - ✓ differences in results attributable to transport in the gas phase?
 - \checkmark CPU concerns: no SIA \rightarrow small time steps \rightarrow CPU times go up !
- ✓ Component 2a-3a with simplified chemistry
- Component 3 with fully coupled drying+carbonation only with Toughreact
- New component : variable porosity, corrosion ?

Acknowledgment

I. Munier B. Cochepir L. Trenty P. Thouvenot S. Poyet P. Le Bescop

French Alternative Energies and Atomic Energy Commission - www.cea.fr

cea

STOCHASTIC APPROACH FOR CALIBRATION

Uncertainty quantification : Domain of variation of uncertain parameters

> Sampling design :

Latin Hypercube Sample with optimal recovering properties

> Metamodel :

Replace Toughreact code with a faster surrogate model, called metamodel ⇒ Gaussian process metamodels for 3 curve indicators

Sensitivity analysis :

Computation of Sobol indices (variance-based importance mesures)

Calibration :

metamodels used to determine **the optimal set of parameters** that matches the *experimental results* (by minimizing an objective function) DE LA RECHERCHE À L'INDUSTRI

Var[]

GLOBAL SENSITIVITY ANALYSIS

- Sensitivity analysis: "Study of influence of inputs on the output of the simulator" Saltelli [1999]
- Global Sensitivity Analysis (GSA) based upon variance decomposition:

$$Var(Y) = \sum_{i=1}^{d} V_i(Y) + \sum_{i < j}^{d} V_{ij}(Y) + \dots + V_{12 \cdots d}(Y)$$
Primary
effect of X_i
Interaction effect
between X_i and X_j
Weight of input
uncertainties on the output
S_i = V_i
index: Influence of an input, independently from the others

 $S_{T_i} = S_i + \sum_{\substack{1 \le j \le d \\ j \ne i}} S_{ij} + \sum_{\substack{1 \le j, k \le d \\ j \ne i, k \ne i}} S_{ijk} + \dots$ index: total influence of an input and all its interactions **Estimation techniques:** Monte Carlo (MC) based upon random sampling

Several thousands of simulations required \Rightarrow use of the GP metamodels

ASSESSING GP METAMODEL QUALITY

 ✓ GP metamodel is built for 3 indicators (characteristic of the output curves) and the GP quality is assessed using predictivity coefficients Q² (Saporta 2006)

HR 70% - Calcite

0,98

0,39

ightarrow overall quality is good

0,90

SENSITIVITY ANALYSIS

- ✓ the influence of the different parameters is determined using Sobol indices (based on variance decomposition) (Sobol 1993)
- Estimation of Sobol indices with GP metamodels and Monte Carlo approach

Sobol index for	log k portlandite	log k CSH 1.6	log k calcite	M.Q. a	M.Q. b	Reactivity
		HR 54%	- Portlandit	e		
1. value at surface	0.9043	0	0	0	0	0.0328
	0.9669	0.0013	0.0013	0.0013	0.0029	0.0960
2. value at depth	0.0736	0	0	0.0795	0.2222	0.0123
	0.5273	0.0324	0.0325	0.4207	0.7341	0.1765
3. front position	0.5951	0.0017	0.0069	0.0113	0.0335	0.0748
	0.8510	0	0.0372	0.0277	0.1535	0.2440
		HR 54%	- Calcite			
1. value at surface	0.4093 0.4171	0.3861 0.4099	0	0 0	0.0015 0	0.1468 0.1788
2. value at depth	0.0063	0	0	0.0960	0.3506	0.0025
	0.4748	0.0026	0.0026	0.5867	0.8040	0.0089
3. front position	0.2264	0.0041	0.006	0.0048	0.0241	0 1755
	0.7016	0.2572	0	0.0205	0.2109	0.5181
direct effect effect	t with ctions	no effect!!	e en re D A A A A A A A A A A A A A A A A A A	100 100 000 000 000 00 000 00 000 00 000 00 000 00 000 00 00		