Changes of microstructure and diffusivity in blended cement pastes exposed to natural carbonation

Wioletta Soja, Hamed Maraghechi, Fabien Georget and Karen Scrivener

Supplementary Cementitious Materials \rightarrow an efficient way to reduce CO₂ emission during cement production

Current typical level of SCM replacement in Europe is up to 35% for CEM II/B

Factors inhibiting increase of SCMs:

- Decreased early-age mechanical properties (slower reaction of SCMs)
- Uncertainties about long-term performance: CARBONATION (lower buffer capacity)

B. Metz, O. Davidson, H. de Coninck, M. Loos, and L. Meyer, "IPCC Special Report on Carbon Dioxide Capture and Storage," 2005.

2

Carbonation reaction → rebar corrosion

- Lowering pH of concrete pore solution
- Dissolution of protective surface oxide layer of steel bars
- Steel rebar corrosion

 $\begin{array}{l} \mathsf{CH} + \mathsf{CO}_2 \to \mathsf{CaCO}_3 + \mathsf{H}_2\mathsf{O} \\ \mathsf{C}\text{-}\mathsf{S}\text{-}\mathsf{H} + \mathsf{CO}_2 \to \mathsf{various} \text{ intermediates} \to \mathsf{CaCO}_3 + \mathsf{SiO}_2\mathsf{n}\mathsf{H}_2\mathsf{O} + \mathsf{H}_2\mathsf{O} \\ \mathsf{Aluminate} \text{ hydrates} + \mathsf{CO}_2 \to \mathsf{CaCO}_3 + \mathsf{hydrated} \text{ alumina} \\ \mathsf{Ferrite} \text{ hydrates} + \mathsf{CO}_2 \to \mathsf{CaCO}_3 + \mathsf{hydrated} \text{ alumina} + \mathsf{iron} \text{ oxides} \end{array}$

Factors involved in prediction of carbonation rate – Research Matrix

SMALL INTERLUDE ON MODELLING: FABIEN GEORGET

Materials

Techniques - cement paste study

Influence of ITZ in concrete

Data from: "The Role of Paste Volume on Performance of Concrete" by G. Hermida, M. Moranville, and R.J. Flatt:

Data from H. Maraghechi, LC3 systems:

Techniques - cement paste study

Carbonation depth (influence of curing time and w/c)

Increase of carbonation depth in concrete with:

- decrease of curing time (more significant difference between 1 and 3 days than 3 and 28 days of curing)
- increase of w/c (decrease of w/c from 0.6 to 0.5 lowers the carbonation depth by factor of
 - 2, further decrease to 0.4 does not have significant influence)

Straight line along carbonation depth at different times gives carbonation coefficient

Carbonation of microconcrete

- All pastes showed carbonation depth = sq rt time
- Carbonation resistance of MixSL with 50 % of clinker replacement is as good as for CEM II/B-LL with 30 % of clinker replacement.

Carbonation coefficient K as a function of CaO_{reactive}

Paper of A. Leemann, P. Nygaard, J. Kaufmann, R. Loser (2015) (EMPA):

B 8 OPC Carbonation coefficient K_{N,S,CUT} ♦ OPC HS ж Δ **DL-15** 6 △L-FA-35 XS-65 [mm/y^{1/2}] 4 2 0 0.8 1.0 1.2 1.4 0.6 w/CaOreactive [-]

Carbonation coefficient KN,S in the sheltered outdoor exposure as a function of the w/CaO_{reactive} of the mortar (A: R2 = 0.79) and of the concrete mixtures (B: R2 = 0.87).

Experiments at EPFL:

Carbonation coefficient as a function of the w/CaO_{reactive} of the microconcrete cured for 28 days and exposed to natural carbonation at three different RH conditions.

- Carbonation resistance can be expressed by the ratio between water and CaO_{reactive}
- Increase of K with increase of w/CaO_{reactive} factor
- High scatter due to differect exposure conditions (different RH for experiments at EPFL)

Are accelerated test reliable?

Swiss requirements: ←life span of 50 years ←life span of 100 years for XC4 exposure class ←life span of 100 years for XC3 exposure class

	Accelerated carbonation on concrete (LafargeHolcim)	Natural carbonation on microconcrete (EPFL)	Natural carbonation on concrete cast at Lafarge-Holcim exposed at EPFL
Curing:	28 days, underwater	28 days, moist room at 95% RH	28 days, underwater
CO ₂ : RH: T:	<mark>4%</mark> 57% ± 3% 20°C	0.04% 55% ± 5% 22°C ± 3°C	<mark>0.04%</mark> 55% ± 5% 22°C ± 3°C
Sample size: Max. aggregate size:	12 x 12 x 36 cm 32 mm (wet)	4 x 4 x 4 cm 8 mm (dry)	12 x 12 x 36 cm 32 mm (wet)

Is carbonation front sharp?

CEM I - 400ppm CO₂

- Larger apparent reaction front due to the inhomogeneity of the transition front
- Actual transition front is sharp but tortuous

Carbonation Front

- Microscopically pretty sharp ~50 μm
- Macroscopic heterogeneity caused by aggregate particles

CHANGES IN SOLID PHASES

Volume changes

portlandite

$$\begin{array}{c} \text{Ca(OH)}_2 + \text{CO}_2 \rightarrow \text{CaCO}_3 + \text{H}_2\text{O} \\ \text{vol} \quad 33.0 \qquad \qquad 36.9 \qquad \qquad \Delta \text{V} = +\ 11.8\% \end{array}$$

C-S-H

Ca_{1.7}SiH₈O_{7.7} + CO₂ → 1.7CaCO₃ + SiO₂nH2O + 4H₂O
vol 113.7 62.8 22-85
$$\Delta V = -25.4\% + 30\%$$

ettringite

$$C_{3}A(C\$)_{3}.32H + CO_{2} > 3CaCO_{3} + 3C\$H_{2} + AH_{3} + 23H_{2}O$$
706.7 110.8 223.6 66.4
total = 511.6 $\Delta V = -27.6$

XRD-Rietveld analysis – quantification of the phases

Can carbonation stop? Why?

Can carbonation stop? Why? Theory about existence of diffusion barrier

 Portlandite crystals develop a layer of calcium carbonate that inhibit further portlandite dissolution

Can carbonation stop? Why? Thermodynamic limitations for calcite precipitation

Pore structure gets finer \rightarrow calcium concentration required for calcite precipitation becomes higher and higher \rightarrow Portlandite becomes more stable than calcite \rightarrow carbonation is effectively stopped

Average of CaCO₃ origin during carbonation

In all cement types C-S-H is contributing into forming CaCO₃, but the values are count from the average of the different zones (carbonated, non-carbonated and transition zone)

Degree of carbonation (DoC)

- Degree of carbonation advances in time
- Some mixes reached a plateau after few months of exposure
 - CEM I and MixSL with w/c 0.35: to lack-of-space theory
 - CEM II/B-LL and MixSL: reaching full carbonation capacity (assumed CaO_{reactive} did not react completely)

POROSITY

How to define non-carbonated sample?

How to define non-carbonated sample?

How to define non-carbonated sample?

t _o =28 d curing (sample before exposure)	t ₀ + 12 m without CO ₂ (sample exposure without CO ₂)	t₀+ 30 m with CO₂ (sample exposure to natural carbonation)
RH > 95 % for 28 days	0 ppm of CO ₂ 70 % RH	

Coarsening porosity due to drying –possible explanation

Possible changes of C-S-H morphology: drying might cause convergent C-S-H what would result in coarser porosity

Adapted from: B. Mota Gassó, K. Scrivener and T. Matschei (Dirs.). Impact of alkali salts on the kinetics and microstructural development of cementitious systems. EPFL, Lausanne, 2015.

Change of C-S-H morphology

Change of C-S-H morphology

Semi-quantitative analysis with high-resolution microscopy

GAS DIFFUSION

New non-steady state diffusion set-up based on LCR design

LCR set-up Volume: 113 cm³

EPFL set-up Volume: 55 cm³ Adapted to el

Adapted to enable measurement of 1 mm thin samples

	LCR Diffusion (cm^2/s)	EPFL Diffusion (cm^2/s)
#24 (CEM II/B-M)	6.1x10 ⁻⁵	6.1x10 ⁻⁵
#35 (CEM II/B-LL)	3.65x10 ⁻⁴	3.70x10 ⁻⁴
#30 (CEM III/A)	4.6x10 ⁻⁵	4.7x10 ⁻⁵
#60 (CEM I)	5.6x10 ⁻⁵	5.3x10 ⁻⁵

MixSL, w/c=035_3d_c

O CEM I_3d_nc

O CEM II/B-M_3d_nc

O CEM II/B-LL_3d_nc

O CEM III/A_3d_nc

O MixSL, w/c=035_3d_nc

Conclusions and perspectives

- Increase of carbonation depth in concrete with decrease of curing time and increase of w/c ratio
- Initial portlandite content does not establish carbonation rate – importance of diffusion properties
- Changing of the diffusion coefficient due to carbonation
- No consistent relationship between total porosity or critical pore radius and diffusion coefficient:

THANK YOU

$C_3A(C\$)_3.32H + CO_2 > 3CaCO_3 + 3C\$H_2 + AH_3 + 23H_2O$ 706.7 110.8 223.6 66.4 total = 511.6 $\Delta V = 27.6$

