Probing the links between water availability and mineral reactivity Anna Harrison, Sasha Wilson, Bree Morgan, Eric Oelkers

Where do we care?

Building, concrete, and cultural heritage weathering and/or carbonation

Rodriguez-Navarro et al (2013)

Rodriguez-Navarro and Doehne (1999)

Where do we care?

Steefel et al. (2013) Rev. Min. Geochem.

Mine waste management

Wilson et al. (2006) Am Mineral

Chen and Grassian (2013) EST

Why does water matter?

- Reaction medium in which minerals dissolve and precipitate
- Transport medium
- Reactant that participates in reactions

Water unlimited vs water limited

Water-unlimited

Water-limited

Thom et al. (2013)

- Unlimited fluid to sample
- Reaction rate measured based on changes in fluid composition

- Limited or no fluid to sample
- Reaction rate measured based on changes solid – requires greater extent of reaction
- Often a coupled dissolutionprecipitation
- Density functional theory calculations

Water unlimited vs water limited

Water-unlimited

Water-limited

- Surface area
- Fluid composition
- Crystal chemistry and crystal structure
- Temperature
- Mass transfer

- Fast attainment of equilibrium in small water volume
- Limited volume in which precipitates can form
- Water impacts intrinsic rate
- Different water properties at dry conditions

What typically controls reaction rates?

- Surface area
- Fluid composition
- Crystal chemistry and crystal structure
- Temperature
- Mass transfer

What typically controls reaction rates?

- Surface area
- Fluid composition* H₂O activity/partial pressure
- Crystal chemistry and crystal structure
- Temperature
- Mass transfer

- 1) How much water is enough water for dissolutionprecipitation reactions to proceed?
- 2) Does water availability impact dissolution/precipitation rates or just distribution of neo-formed minerals?
- 3) How can we incorporate water limitations in reactive transport models?

Test case: Carbon mineralization

Stability of carbonates dependent on humidity

Humidity-dependent Mg-carbonate stability

Pure phase T–RH stability experiments

Sasha Wilson (U of

Bree Morgan (U of

Sydn

Pure phase T–RH stability experiments

164+ long-term experiments:

- <75 µm grain size
- RH: 2 100%
- T: -25, 3, 23, 50, 75°C
- Nominally dry (unsaturated) systems

- T and relative humidity (RH) control the stability of many hydrous, hygroscopic phases
- Phases: lansfordite, nesquehonite, dypingite, hydromagnesite (and magnesite)
- Constant RH and T
- Analysed at 2, 8 & 20 months and again at 3 years

$$\mathcal{R}\mathcal{H} = \frac{\mathcal{P}_{H2O}}{\mathcal{P}_{H2O,\max}} \cdot 100\%$$

After Wilson & Bish (2012) GCA

Pure phase T–RH stability experiments

Key outcomes

- Decomposition to more stable Mg-carbonate phases is an H₂O limited process
- Moderate to high RH is required to decompose to less hydrated, more stable phases
- Less stable, less hydrated phases persist at low RH
- Transformation happens faster at higher T and higher RH

What about precipitation of a new phase?

Reaction rates in extremely dry conditions

How does precipitation work?

- How does this work?
- Does water availability impact precipitation rates or just distribution?
- How much water is enough?

Purser (1978) J. Petrol. Geol.

This study

00 µm

quartz carbonate

gas

• "meniscus" cements often taken as evidence of precipitation in the unsaturated zone, leading to patchy and variable carbonate distribution

Water-limited carbonate growth experiment

- Brucite [Mg(OH)₂], a common accessory mineral in ultramafic rock, was exposed to atmospheres of varied humidity (29%-100%) as controlled with saturated salt solutions at 25°C
- Two types of brucite:

1) massive, polycrystalline brucite (200 - 400 µm)

- 2) freshly cleaved crystalline sheets (millimetre-scale)
- Pure and atmospheric *p*CO₂

Water-limited carbonate growth experiment

- Masses tracked before and after reaction (CO_2 and H_2O gain)
- Reaction products examined using scanning electron microscopy (SEM), infrared spectroscopy (FTIR), and synchrotron-based X-ray computed micro-tomography, total carbon quantified

Precipitation occurs in adsorbed water film

Limited precipitation at low humidity

Carbonate growth at high humidity

Precipitation depends on humidity

• A **threshold value** of relative humidity (film thickness?) required to facilitate or **enhance rate of precipitation**

Crystal face or topographic control

75% RH, pure CO₂ (cleaved brucite)

 Precipitates were associated with topography (*e.g.*, sheet edges) on cleaved brucite crystals

Crystal face or topographic control

(cleaved brucite)

 Precipitation is controlled either by presence of thicker water films at these locations OR crystal structure of substrate

RH-dependent growth on both substrates

4% RH

100% RH

Pure CO₂, 24 h

Pure CO₂, 24 h

Quantifying the reactions

Atmospheric CO₂

Quantifying the reactions

Pure CO₂

Extent of precipitation: 3D imaging

100% RH, 378 days

Extent of reaction

100% humidity, 378 days

Carbonate rind thickness exceeds typical adsorbed water film thickness (e.g., 15 Å on calcite; Bohr et al., 2010, GCA; 10s-100s nm Mg(NO₃)₂ rinds on MgO; Al-Abadleh et al., 2003, *J. Phys. Chem.*) Harrison et al. in

Calculating carbonate volume

- Carbonate precipitates homogeneously distributed and near-constant thickness (~4 µm) around all brucite grains
- Volume of carbonate determined by application of erosion filter to separate rind from bulk, followed by difference in volume of entire grain and unreacted (bulk) brucite
 Harrison et al. in

Calculating carbonate volume

- **14%** of solid is carbonate
- 8% brucite conversion to dypingite $[Mg_5(CO_3)_4(OH)_2 5H_2O]$
- Distributed as a thin rind on the surface of the mineral

Rates are water content dependent

Rates are water content dependent

Rates impacted by water activity

Olsen et al. (2014) JGR Planet

Key Outcomes

- 1) Dissolution and precipitation occur in adsorbed water film over short time period at low T and low P
- 2) Precipitation dependent on substrate characteristics
- 3) Threshold humidity below which reaction rates are low and relatively independent of humidity
 - may be related to a change in the water layer structure (e.g., 2D vs. 3D; Hausner et al., 2007)
- 4) Above threshold reaction rates proceed at a rate-dependent on humidity or water activity(?)

Impact of water content on bulk reaction rates in porous media

Unsaturated column experiments

Carbonate precipitation dictated by water

Harrison et al. (2016) Chem. Geol.

Reaction extent dictated by water content

Harrison et al. (2016) Chem. Geol.

Reactive transport modelling

Mayer et al. (2002) Water Resour. Res.; Molins and Mayer (2007) Water Resour. Res.; Bea et al. (2012) Vadose

-

Model fails at low water saturation

Harrison et al. (2016) Chem. Geol.

"End-member" conceptual models

Damp pore

Reactive

Surface area maintained Reduced reactive capacity

Harrison et al. in prep

Conclusions

- Mineral weathering reactions strongly impacted by water availability
- Threshold in water availability below which reaction rates are independent of humidity
 - Threshold may be attributable to change in water structure at surface
- Above threshold reaction rates proceed at a rate-dependent on humidity or water activity(?)
- Extent of reaction limited at low water saturation even if rates are not limited
- Incorporation of water-limited reactions in reactive transport models will help better predict response of mineral weathering reactions to changes in water availability and help better optimize reactions in engineered systems

Collaborator acknowledgements

European Commission DryMin: 701478

Jacques Schott, Catherine Noiriel, Vasileios Mavromatis – Géosciences Environnement Toulouse

Gary Tarbuck – UCL

Amanda Stubbs – *Trent University*

Jennie Moe, Mckenzie Douglas **NSERC**– Queen's University **CRSNG**

Hydrated Mg-carbonates at all humidities

• Hydrated hydroxy-Mg-carbonates (dypingite or hydromagnesite) form within one week at all RHs and atmospheric pCO_2 and within 24 h with pure CO.

Gas-driven reactions

- ♦ Reactions that store C are dependent on exposure to CO₂
- Exposure to gas is important driver of reactions and their kinetics
- Water may be limiting for these important gas-driven reactions
- Water limitations in reactive transport models will help predictions and optimizing reactions

Fluid composition

Pokrovsky and Schott (2000) GCA

Key Outcomes

- 1) Reactive surface area maintained at low water saturation, suggesting all surfaces remain exposed to reactive fluid
- 2) Reactive capacity reduced at low water saturation
- 3) Reaction rates proceed as if water is not limiting, implying that threshold water content was exceeded
- Can capture some aspects of water-limited reactivity with a reactive transport model but still lacking mechanistic representation

How can we better capture water-limited reaction rates and capacity? What are the mechanisms that limit reactive capacity?