

Water Sorption of cement paste: Effect of temperature & carbonation

Stéphane POYET

DE LA RECHERCHE À L'INDUSTRIE

International workshop on mechanims of concrete carbonation (Concarb2019) Champs-sur-Marne (France), June 27, 2019

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr

INTRODUCTION

Radioactive waste management

- Intermediate level waste (ILW) & Intermediate long-lived waste (ILW-LL)
- Waste packages and structure elements would be subjected to CO₂ and heat (thermal output of the waste)
- It is necessary to be account for the influence of temperature and carbonation on water retention and transport
- \rightarrow Durability assessment of waste packages and concrete structures

Outline of the presentation

- Influence of temperature on water sorption
- Influence of carbonation on water sorption and transport

MATERIALS

4 hardened cement pastes

- Use of 4 different binders with siliceous SCMs
- Common w/b ratio = 0.40
- Curing = 4 months under artificial pore solution

Paste	PI	PV	PIII	T1		
Binder	OPC	CEM V/A	CEM III/A	LAC		
OPC	100%	56%	39%	37.5%	S = Slag FA = Fly Ash	
SCMs		22% S + 22% FA	61% S	30% FA + 32.5% SF	SF = Silica Fume	
				+ scn	ls	
				Porc	osity	
Porosity	36%	37%	40%	41%		
[CH] (mol/L of paste)	5.4	2.3	1.8	0.0	Approx.	
[C-S-H] (mol/L of paste)	5.2	6.5	6.5	7.6	1-1-	
[сн] + 🗲 🔶 + [с-s-н]						

Desorption isotherm - Water content (wt%) versus RH

- Desorption isotherms at 20, 50 & 80°C
- Use of the desiccator method (saturated salt solutions)
- Significant modifications due to temperature:
 1) significant decrease in water retained
 2) modification of the desorption isotherm itself
 → microstructure modification?

What happens?

- ▶ Use of Mercury Intrusion Porosimetry (MIP) \rightarrow microstructure
- Use of OPC concrete (w/c = 0.43) tested for desorption at 30°C and 80°C
- ► The MIP results do not display significant differences → Modification of the microstructure was not thought to be the main reason for the T-induced changes
 - ightarrow Another mechanism was believed to be at work

Thermal desorption

- Shift of equilibrium between vapour and adsorbed water induced by T
- Le Chatelier's principle: "the effect of a change in temperature on a system at equilibrium is to shift the equilibrium in the direction that acts to counteract the temperature change"
- Adsorption is an **exothermic process**
 - \rightarrow A temperature increase then promotes desorption
 - \rightarrow Water molecules are released and water content decreases

Modelling approach

- ► Assumption: no change in microstructure induced by temperature (→ the effect of microstructure changes are neglected in front of thermal desorption)
- ▶ Use of Clausius-Clapeyron equation to account for the heat exchanged during adsorption

$q_{st}(w) = -R \left[\frac{\partial ln(p_v)}{\partial \left(\frac{1}{T}\right)} \right]_w$
--

 q_{st} isosteric energy of adsorption for w (kJ/mol) p_v vapour pressure at equilibrium with w and T (Pa) T absolute temperature (K) w water content

▶ q_{st} → slope of the curves { $ln(p_v) - (1/T)$ } at constant water content values w

Evaluation of the isosteric energy q_{st}

- ▶ Use of the experimental desorption isotherms (20, 50 and 80°C)
- Use of Clausius-Clapeyon
- Use of a model to fit the isotherm and evaluate $p_v(w, T) = h(w, T)p_{vs}(T)$
- Example of the CEM I paste

 $q_{st}(w) = -R \left[\frac{\partial ln(p_v)}{\partial \left(\frac{1}{T} \right)} \right]_w$

Evaluation of the isosteric energy q_{st}

- **b** Because the pastes present different microstructures the q_{st} results cannot be compared directly
- Coverage = w/w_m
 with w_m = water content needed to complete the monolayer
 → Coverage ≈ number of adsorbed water layers
- ▶ $w/w_m \le 1 \Rightarrow$ high energy of adsorption = influence of the substrate \Rightarrow But great uncertainties (at least ± 15 kJ/mol)...

Assessment of the influence of temperature

- ▶ Integration Clausius-Clapeyron eq. between two different temperatures
 - Reference T_0 at which the desorption isotherm is known
 - Arbitrary T at which the desorption isotherm is to be evaluated
- Estimation of the shift of equilibrium in terms of RH *h*

Methods \rightarrow accelerated carbonation at 3% CO₂ (1y)

Impact of carbonation on porosity / density

- Incorporation of exogenous CO₂
 - \rightarrow increase in density
 - \rightarrow decrease in porosity
- ▶ The changes in porosity / density depend on the binder
 - \rightarrow differences in Ca-contents, degree of hydration...

Density (dry)	ОРС	CEM V/A	CEM III/A	LAC (T1)
Non carbonated	1.69	1.56	1.60	1.36
Carbonated	2.08	1.88	1.90	1.56
Difference	+ 0.39	+ 0.32	+ 0.30	+ 0.20

Porosity	ОРС	CEM V/A	CEM III/A	LAC (T1)
Non carbonated	36%	37%	40%	41%
Carbonated	21%	28%	29%	36%
Difference	- 15%	- 9%	- 11%	- 5%

[Ca] + <

Desorption isotherm at 20°C - Water content (wt%) versus RH

Significant decrease in water content after carbonation, due to
 1) decrease in porosity → decrease in the amount of water retained
 2) increase in solid density → increase in the mass of dry solid

$$w(wt\%) = \frac{m(water)}{m(dry \ solid)}$$

• Similar conclusions for all the binders \rightarrow consistent with literature

Effective permeability ($K_e = K_i \times k_{rl}$) versus saturation (S)

Cup-method + inverse analysis

Pore size distribution (PSD)
$$\rightarrow \frac{dv}{dln(D)}$$
 vs. pore entry diameter (D)

- ► Use of mercury intrusion porosimetry
- Immersion into liquid N₂ + freeze-drying

Cracking → Image analysis

- Use of UV-fluorescent resin
- Significant cracking after (accelerated) carbonation
- ▶ Image analysis $\rightarrow I_c$ = surface fraction of cracks
- \rightarrow Competition between clogging and cracking

COMPARISON BETWEEN NATURAL & ACCELERATED CARBONATION

Are these results representative of natural carbonation?

Comparison between 2 'similar' pastes

COMMISSARIAT À L'ÉNERGIE ATOMIQUE ET AUX ÉNERGIES ALTERNATIVES

19

COMMISSARIAT À L'ÉNERGIE ATOMIQUE ET AUX ÉNERGIES ALTERNATIVES

20

CONCLUSIONS

Influence of temperature

- Decrease of water content when temperature is increased
- Mainly due to the shift of equilibrium between vapour and adsorbed water
- ▶ Can be described using Clausius-Clapeyron equation
 → isosteric energy of adsorption q_{st}
 → assessment of the influence of temperature on the desorption isotherm
- Current work: methodology for straightforward measurement of q_{st}
 → comparison/validation purposes
 → use for cement-based materials

Influence of carbonation

- Decrease of water content after carbonation
- And modifications of the desorption isotherm (for binders with SCMs)
- No coarsening of the pore-structure detected by MIP but significant cracking induced by carbonation
- Consequences influence of carbonation = competition between pore-clogging and cracking that depended on the considered binder (SCMs)
- Current work: influence of aggregates (concrete) on changes in transport properties induced by carbonation

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr

DESORPTION ISOTHERMS

