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INTRODUCTION

Radioactive waste management

P> Intermediate level waste (ILW) & Intermediate long-lived waste (ILW-LL)

P> Waste packages and structure elements would be subjected to CO, and heat
(thermal output of the waste)

P Itis necessary to be account for the influence of temperature and carbonation on
water retention and transport

-> Durability assessment of waste packages and concrete structures

Outline of the presentation

P Influence of temperature on water sorption
P Influence of carbonation on water sorption and transport
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MATERIALS

4 hardened cement pastes
- Use of 4 different binders with siliceous SCMs

»  Common w/b ratio = 0.40
P Curing = 4 months under artificial pore solution

Binder CEM V/A CEM llI/A
OPC 100% 56% 39% 37.5%
SCMs 22%S+22%FA  61%S 30% FA +32.5% SF
>+ porosity
Porosity 36% 37% 40% 41%
[CH] (mol/L of paste) 5.4 2.3 1.8 0.0
[C-S-H] (mol/L of paste) 5.2 6.5 6.5 7.6

[CH] + <€ 3 + [C5-H]

COMMISSARIAT A L’ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES



25%

20%

15%

10%

Water content (wt%)

5% [q

0% *

INFLUENCE OF TEMPERATURE

Desorption isotherm - Water content (wt%) versus RH

Desorption isotherms at 20, 50 & 80°C
Use of the desiccator method (saturated salt solutions)
Significant modifications due to temperature:

1) significant decrease in water retained
2) modification of the desorption isotherm itself

- microstructure modification?

30%
i 25%
<
£ 20% |
I £
= 15%
| 3
—
S 10%
=
© L2 £ 50,
L]
[~ A% soc
A - - 0% 1
0% 25% 50% 75% 100%
RH

COMMISSARIAT A L’ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES

25%

50%
RH

75%  100%

Water content (wt%)

wwt%) =

m(water)
m(dry solid)

35%

30%

25% r

20%

0%

/.
15% | o
50°c/ A
10% | A
o @

s/ 2/
5% Z//

0% 25%

50%
RH

75%

100%



INFLUENCE OF TEMPERATURE

What happens?

/—( OPC concrete Jﬁ
dv

> Use of Mercury Intrusion Porosimetry (MIP) = microstructure

din(D)
1.2 -
P> Use of OPC concrete (w/c = 0.43) tested for desorption D .
at 30°C and 80°C 1 YR s
b at 30°
> The MIP results do not display significant differences 08 Jl
- Modification of the microstructure was not thought i o4 b
. . 06 < )
to be the main reason for the T-induced changes
- Another mechanism was believed to be at work 04 l.
0z | f
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P Adsorption is an exothermic process oa b A I\
- A temperature increase then promotes desorption '
- Water molecules are released and water content decreases 02 ey I
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INFLUENCE OF TEMPERATURE

Modelling approach

P Assumption: no change in microstructure induced by temperature
(= the effect of microstructure changes are neglected in front of thermal desorption)

P> Use of Clausius-Clapeyron equation to account for the heat exchanged during adsorption

qst(w) = —R

aln(pv)]
o7 |,

q,. isosteric energy of adsorption for w (kJ/mol)

p, vapour pressure at equilibrium with w and T (Pa)
T absolute temperature (K)

w water content

b g, = slope of the curves { In(p,) - (1/T) } at constant water content values w
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INFLUENCE OF TEMPERATURE

Evaluation of the isosteric energy q.,

P Use of the experimental desorption isotherms (20, 50 and 80°C)
P Use of Clausius-Clapeyon
b Use of a model to fit the isotherm and evaluate p,(w, T) = h(w, T)p,s(T)
> Example of the CEM | paste
dln(p,)
qst(w) =—-R 6(1)
T w
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INFLUENCE OF TEMPERATURE

Evaluation of the isosteric energy q.,

P> Because the pastes present different microstructures the g, results cannot be compared directly

b Coverage = w/w,,

with w,, = water content needed to complete the monolayer
- Coverage ~ number of adsorbed water layers

> w/w,, <1 - highenergy of adsorption = influence of the substrate
- But great uncertainties (at least + 15 kJ/mol)...
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INFLUENCE OF TEMPERATURE

Assessment of the influence of temperature

Integration Clausius-Clapeyron eq. between two different temperatures
- Reference T, at which the desorption isotherm is known

- Arbitrary T at which the desorption isotherm is to be evaluated
Estimation of the shift of equilibrium in terms of RH h

NELIED Pus(To) T-T
0 0
qse(W) = — |:> h(w,T) = h(w, Ty) ——=exp [q ¢(w) ( )]
EONN Pos(T) s RTT,
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- o
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3 ]
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INFLUENCE OF CARBONATION

Methods - accelerated carbonation at 3% CO, (1y)

Climatic chamber

Casting & (1y at 25°C, 55% RH
unmolding & 3% CO,)
atl4d Climatic chamber
(25°C & 55% RH)
Accelerated
. TESTS
carbonation
Cure Specimens Drying :
(4 months) preparation (1 month) i
Using synthetic Thin disks Drying TESTS
pore solution (@506 mm)

Climatic chamber
(25°C & 55% RH)

Mineralogy = XRD, TGA, 2°Si NMR
Microstructure = Porosity/density, MIP
Water transport = desorption isotherm,
permeability (cup-test)

Cracking = image analysis
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INFLUENCE OF CARBONATION

Impact of carbonation on porosity / density

P Incorporation of exogenous CO,
- increase in density
- decrease in porosity

- The changes in porosity / density depend on the binder
- differences in Ca-contents, degree of hydration...

Density (dry) - CEM V/A CEM IlI/A LAC (T1)

Non carbonated 1.69 1.56 1.60 1.3
Carbonated 2.08 1.88 1.90 1.56
Difference +0.39 +0.32 +0.30 +0.20

Change in dry density

0.5
0.4
0.3
0.2
0.1

0.0

[ca] + <€ > + SCMs

Non carbonated 36% 37% 40% 41%
Carbonated 21% 28% 29% 36%
Difference -15% -9% -11% -5%
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INFLUENCE OF CARBONATION

Desorption isotherm at 20°C - Water content (wt%) versus RH

»-  Significant decrease in water content after carbonation, due to
1) decrease in porosity = decrease in the amount of water retained w(wt%) =
2) increase in solid density = increase in the mass of dry solid

m(water)
m(dry solid)

> Similar conclusions for all the binders = consistent with literature

Blended cements
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INFLUENCE OF CARBONATION

Desorption isotherm at 20°C — Saturation versus RH v(water)

,—( Portland cement J—\

P> The desorption isotherm
after carbonation remains
more or less unmodified

- Similar to Houst (1992)

b Despite changes in
porosity, the PSD is not
expected to be modified
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> Significant change in the desorption isotherms:

P Similar conclusions for all the blended cements

( Blended cements ) <

Decrease at low RH (decrease of pore surface)
Change at high RH (steeper curve)
-> creation of pores desaturated at high RH = coarsening of the pore-structure
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INFLUENCE OF CARBONATION

Effective permeability (K, = K; X k,;) versus saturation (S)

P Cup-method + inverse analysis

,—( Portland cement J—\ p ( Blended cements J N
> Decrease in K, induced by > Significant increase in K, induced by (accelerated) carbonation
(accelerated) carbonation » Increase of 2 orders of magnitude
by a factor of 2 P> The increase depends on the considered binder
> Consistent with literature - Origin: coarsening of the pore-structure?
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INFLUENCE OF CARBONATION

Pore size distribution (PSD) = vs. pore entry diameter (D)

dv
din(D)

P Use of mercury intrusion porosimetry
P Immersion into liquid N, + freeze-drying

,_( Portland cement ]_\ - { Blended cements ]
> No coarsening of the
pore-structure after P> No significant coarsening of the pore-structure after carbonation
carbonation (as expected) - Mainly porosity clogging
- Mainly porosity clogging
CEM | CEM V/A CEM IllI/A T1 (LAC)
0.4 0.4 0.4 0.4
03s | CEM I 035 CEM V/A 03s | CEM I11/A 035 b % T1(CV)
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02 02 02
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01 01 | 01
0.05 0.05 0.05
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INFLUENCE OF CARBONATION

Cracking = Image analysis

Use of UV-fluorescent resin
Significant cracking after (accelerated) carbonation
Image analysis = I, = surface fraction of cracks

- Competition between clogging and cracking

(—( Portland cement % -~ { Blended cements

N/

Non carbonated
Non carbonated

CEM 1II/A T1 (LAC)

Carbonated pastes
Carbonated pastes

AP =-15% I, =4% ) Ap=—-9% I.=7% Ap =—-11% I. =9% Ap =—-5% I, =10%
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INFLUENCE OF CARBONATION

(_( Portland cement )ﬁ (_( LAC (T1) H

Before carbonation

| C-S-H with # C/S ratios

29Si MAS NMR

. . . . . P Decalcification of C-S-H . .
-60 -80 -100 -120 -140 P Formation of an -60 -80 -100 -120 -140
Déplacement 2°Si (ppm) /amorphousr S”icate Déplacement °Si (ppm)

product
b Polymerisation of silica

2 chains = shrinkage
Exp.
Sim.
QT"’ Q
Q" Qll/ ¢ e \\‘foe' Sim
cerloolsesgSilIIIzaaallzalilol \
Rés.
~—T N T T — T
: : ; ; | [~ After carbonation 7 ; : ; ; |
-60 -80 -100 120 140 Amorphous silicate product -60 80 -100 -120 -140
Déplacement 2Si (ppm) (Si“ca gel) Déplacement 2Si (ppm)
N J \§ J
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COMPARISON BETWEEN NATURAL & ACCELERATED CARBONATION

Are these results representative of natural carbonation?

P> Comparison between 2 ‘similar’ pastes

(_( Natural carbonation H /_( Accelerated carbonation ]_\

b~ Pastes prepared in 1994 Gallé & Daian (2000) b Pastes prepared in 2012 This study
> CEM V/Awithw/c=0.45 Mag. Concr. Res. 52 » CEM V/A with w/c=0.40
»  Cylinders @40 x 80 mm S > Disks @50 x 6 mm
P> Specimens kept in the laboratory at ambient P Complete carbonation
conditions without protection against CO, P Accelerated carbonation at 25°C, 55% RH &
P Carbonation depth = 10 mm 3% CO,
Phenolphtalein on a
fresh cross-section
o J \
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Accelerated carbonation )“

Exp. /

.60 -80 -100
Chemical shift 2Si (ppm)

60 -80 -100 -120
Chemical shift 2°Si (ppm)

\ After carbonation: /

Before carbonation:
/ C-S-H with remaining \

fly ash and slag

In both cases:

> Significant C-S-H
decalcification

> Subsequent polymerization
of SiO, chains

C-S-H decalcification level:
> Natural 2> = 80%
> Accelerated 2 = 90%

Amorphous Silicate product
(silica gel) and traces of C-S-H

.
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COMPARISON BETWEEN NATURAL & ACCELERATED CARBONATION

~

Natural carbonation
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Accelerated carbonation }“

.

Water content
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Cracking pattern
after carbonation

/

In both cases:

P Significant cracking induced
by C-S-H decalcification

»  Similar modifications of the
desorption isotherm

Impact of carbonation
on the desorption isotherm

J
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COMPARISON BETWEEN NATURAL & ACCELERATED CARBONATION
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CONCLUSIONS

Influence of temperature

Decrease of water content when temperature is increased

Mainly due to the shift of equilibrium between vapour and adsorbed water
Can be described using Clausius-Clapeyron equation

- isosteric energy of adsorption g,

- assessment of the influence of temperature on the desorption isotherm

vVvyy

P Current work: methodology for straightforward measurement of g,
- comparison/validation purposes
-> use for cement-based materials

Influence of carbonation

Decrease of water content after carbonation

And modifications of the desorption isotherm (for binders with SCMs)

No coarsening of the pore-structure detected by MIP but significant cracking induced by
carbonation

P> Consequences influence of carbonation = competition between pore-clogging and
cracking that depended on the considered binder (SCMs)

vVvyy

P Current work: influence of aggregates (concrete) on changes in transport properties
induced by carbonation
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Cea Thanks for your attention
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- EDF, Andra, CEA for funding

- E.Drouet, M. Auroy, S. Charles, P. Le Bescop, T. Charpentier, J.-M. Torrenti,
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DESORPTION ISOTHERMS
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