Carbonation in OPC and Alternative Cement Concrete: Impact of Real Climate versus Accelerated Testing and Implications on Service Life

Kim Kurtis
ConCarb2019
ENPC, Champs sur Marne
June 27, 2019

Exploratory Advanced Research (EAR)

What are ACMs?

Defining alternative binders (or alternative cements) has been an evolutionary process:

- Alternative (non-Portland) cements
- Per ACI ITG-10R-18:

alternative cement—an inorganic cement that can be used as a complete replacement for portland or blended hydraulic cements, and that is not covered by applicable specifications for portland or blended hydraulic cements.

ACI Committee
242: Alternative
Cements

What are ACMs?

ACI ITG-10 classification of commercially available and emerging alternative cement technologies.

Clinkered alternative cements - ACM produced using technologies similar to portland cement production, with process changes that preclude production of portland cement but positively affect the environmental impact of production.

- Calcium aluminate (CAC)
- Reactive belite
- Calcium sulfoaluminate (CSA)
- Carbonated calcium silicate

Calcined alternative cements - ACM produced by calcining a raw material only, without further pyroprocessing, to produce additional mineral phases within the material.

- Magnesium oxychloride
- Magnesium phosphate (MPC)
- Magnesium ammonium phosphate
- Magnesium potassium phosphate

Nonclinkered alternative cements - ACM produced using precursors that require no pyroprocessing and set after addition of an activating solution to cause reactions that are not hydration or acid-base.

- Alkali-activated (AA)
- Fly ash
- Slag
- Recycled glass
- Supersulfated cement

PROJECT OVERVIEW

- FHWA Exploratory Advanced Research (EAR) project 2014-2019
- Novel Alternative Cementitious Materials for Development of the Next Generation of Sustainable Transportation Infrastructure

Upscaling & Application

- Approval process Adaptation of standards Performance criteria
- → variety of uses in transportation

Goal: Identify (and adapt) ACMs for rapid implementation relying upon existing construction technologies

Durability Testing & Advanced Characterization

- Unified approachAdaptation of standards
- Limits

Preliminary Screening: Novel ACMs

- Range of chemistriesSustainability
- Past in situ performance
- Meet basic performance targets

RESEARCH TEAM

- Kimberly Kurtis
- Lisa Burris (now at Ohio State)
- **Prasanth Alapati**

- Tyler Ley
- Mehdi Khanzadeh
- J. Peery
- A. Hajibabaee

Tourney Consulting Group

Neal Berke

US Army ERDC

US Army Corps of Engineers®

- **Robert Moser**
- Sarah Williams

PROJECT OVERVIEW

- Phase 1: 12+ ACMs considered, 9 ACMs evaluated
- Phase 2, 3: 5 ACMs evaluated

 Many, many mix designs evaluated against performance criteria, benchmarked against companion OPC

Why are we interested in ACMs?

Unique properties appropriate for specialty applications could benefit larger scale transportation infrastructure construction

- Repair (fast set)
- Shrinkage compensation
- High early strength
- Low heat of hydration
- Enhanced durability
- New construction methods

Why are we interested in ACMs?

Sustainable construction materials

- Lower embodied CO₂
- Lower embodied energy
- Higher strength → smaller dimensions
- Enhanced durability → longer service life

Agenda

- Carbonation in ACM vs OPC concrete
 - Reaction mechanisms
 - Effects on porosity, performance
 - Carbonation rates
- Influence of CO₂ concentration
 - Atmospheric levels vs accelerated testing
- Conclusions & Recommendations

Materials: 3 ACMs (out of 9)

Binder		Specific gravity	SSA (m²/g)
Calcium Aluminate cement	CAC	2.97	306.4
Calcium SulfoAluminate cement	CSA	2.81	501.3
Alkali-Activated binder (C-ash)	AA	2.58	550.7
Type I/II Ordinary Portland cement	OPC	3.05	333.3

Varied Phase Composition

9 ACMs evaluated (Phase 1); 5 ACMs evaluated (Phase 2, 3)

Different hydration products

$$2C_3S + 6H \rightarrow \textbf{C-S-H} + 3CH$$
 OPC
 $C_2S + 4H \rightarrow \textbf{C-S-H} + CH$
 $C_3A + 3C\overline{S}H_2 + 26H \rightarrow \textbf{C}_6A\overline{S}_3H_{32}$ (Ettringite)
 $2C_3A + C_6A\overline{S}_3H_{32} + 4H \rightarrow 3\textbf{C}_4A\overline{S}H_{12}$ (Afm)

2CA + 60H
$$\rightarrow$$
 $2C_3AH_6 + 4AH_3 + 36H$

CSA
$$C_{4}A_{3}\overline{S} + 2C\overline{S} + 38H \rightarrow \textbf{Ettringite} + 2AH_{3}$$

$$C_{4}A_{3}\overline{S} + 18H \rightarrow \textbf{Afm} + 2AH_{3}$$

$$C_{4}A_{3}\overline{S} + 8C\overline{S} + 6CH + 90H \rightarrow 3\textbf{Ettringite}$$

(Ca + Si) + H
$$\rightarrow$$
 C-S-H
(Si + Al) + Alkaline sol \rightarrow (alkali cation)-A-S-H

Understanding Carbonation in ACMs vs OPC: 3 Objectives

Reaction mechanisms
 (hydration and carbonation products)

Cement paste cubes at w/c: 0.45 (0.25-AA)

2. Effects on porosity

Cement mortar discs at w/c : 0.45 (0.25-AA)

3. Effects on pH, and rate of carbonation

Concrete cylinders at w/c : 0.4 (0.205–AA)

ACM Durability - Approach

Laboratory testing of ACM concrete durability

- Rely, as much as possible, on established accelerated test methods
- Compare against OPC
- Relate to materials characterization to understand factors governing performance
- Validate against field performance

Exposed to **7% CO₂** at 30C and 55%RH for 56 days (84 days – concrete)

Split into two halves along this line

Sorptivity Test – ASTM C1585

Carbonation in OPC

CO₂ exposure level: 0, 7% for 56 days

$$CH + CO_2 \rightarrow CaCO_3 + H$$

- Decomposition of secondary phases might not significantly affect the strength
- Initial sorption ↓, secondary sorption ↑
 Dissolution of phases (CH) into pore water -> precipitating as CaCO₃ in capillary pores
- CH buffers the pore solution --> carbonation might reduce the pH

Carbonation in CAC

CO₂ exposure level: 0, 7% for 56 days

- Decomposition of primary phases might significantly affect the strength
- Initial sorption ↓, secondary sorption ↑
 Dissolution of CAH₁₀ phase into pore water -> precipitating as CaCO₃ in capillary pores
- CAH₁₀ buffers the pore solution --> carbonation might significantly reduce the pH

Carbonation in CSA

CO₂ exposure level: 0, 7% for 56 days

Ettringite
$$+ CO_2 \rightarrow 3CaCO_3 + 3C\overline{S}H_x + AH_3 + (29-x)H$$

Acidification of pore water with CO₂--> carbonation might reduce the pH

Carbonation in AA

CO₂ exposure level: 0, 7% for 56 days

- Decomposition of secondary phases might not significantly affect the strength
- Initial sorption ↑, secondary sorption ↓
 Carbonation of ettringite -> CaCO₃, and release of significant amounts of water
- Carbonation of alkalis --> might significantly reduce the pH

CO₂ Binding, Effects on Porosity

0% CO₂ Exposure

7% CO₂ Exposure

Carbonation Rates for ACMs vs OPC

Reaction mechanisms
 (hydration and carbonation products)

Cement paste cubes at w/c: 0.45 (0.25-AA)

2. Effects on porosity

Cement mortar discs at w/c : 0.45 (0.25–AA) 3. Effects on pH, and rate of carbonation

Concrete cylinders at w/c: 0.4 (0.205–AA)

Carbonation in Concrete

Effects of carbonation on pH

- Exposed to 7% CO₂ for **84 days** @
 30C & 55%RH
- Split into 2 halves -> sprayed with "rainbow" indicator

рΗ

	Uncarbonated	Carbonated
OPC	> 13	9 - 11
CAC	9 - 11	< 9
CSA	9 - 11	< 9
AA	> 13	< 9

Carbonation rate in ACMs compared to OPC

- Even though AA has low porosity and higher pH, the amount of CO₂ required to carbonate is significantly lower compared to CSA and OPC
- In CAC, reduction in capillary porosity with carbonation
- OPC has higher amounts of CH good buffering capacity (compared to ACMs) even at higher levels of carbonation

Agenda

- Carbonation in ACM vs OPC concrete
 - Reaction mechanisms
 - Effects on porosity, performance
 - Carbonation rates
- Influence of CO₂ concentration
 - Atmospheric levels vs accelerated testing
- Conclusions & Recommendations

OPC: Effect of [CO₂]

CO₂ exposure level: **0**, **0.04**, **7**, **15%** for 56 days

— TG — DTG

Et – Ettringite, Pt – Portlandite, CSH – (C-S-H), CC – CaCO₃ Fm – Monosulfo aluminate, Mh – Mg(OH)₂

 $CH + CO_2 \rightarrow CaCO_3 + H$

Conclusions: ACM vs OPC Carbonation

- CAC, CSA and AA concretes carbonated at a much faster rate compared to OPC concrete.
- Carbonation in CAC and CSA --> significant decomposition of main hydration products.
- Carbonation in OPC and CAC mortar mixtures resulted in significant reduction in near-surface capillary porosity.
- pH levels in the carbonated region of ACM concrete dropped below 9.
 - Effects on steel passivation and corrosion must be examined.

More detailed presentation of these results: Alapati and Kurtis, Sixth International Conference on the Durability of Concrete Structures, 18-20 July 2018, University of Leeds.

Conclusions: Carbonation Testing

- Increased [CO₂] produced more rapid rates of carbonation, but with mechanisms relatively consistent with exposure to atmospheric levels, except for AA
 - → Higher concentrations likely not appropriate for AA systems
 - → Carbonation appears to facilitate conversion
 - → Relevant for test method design
 - → Provides some insight into potential effects of increasing global GHG emissions
- Need to establish consistent accelerated exposure test, considering sample preparation (w/c, curing, age at testing) and exposure (duration, CO₂ concentration, temperature, RH)
- Correlation with other performance metrics (e.g.,sorptivity, diffusivity, corrosion onset, compressive strength) necessary
- Validation against field performance necessary

Field Durability Studies

- Treat Island, Maine: wet/dry, freeze/thaw, corrosion
- Biscayne Bay, Florida: wet/dry, corrosion
- Yearly monitoring during site inspections:
 - Visual and NDE
- Retrieval for lab testing:
 - Petrographic analysis
 - Chloride diffusion
 - Mechanical properties

Treat Island – Coastal Maine Exposure

Biscayne Bay – Coastal Florida Exposure

Field Durability Studies

Photos after 3yr of severe exposure at Treat Island:

OPC CSA CAC

Field Durability Studies

Petro after 2yr of severe exposure at Treat Island:

ACMs have faired remarkably well in this severe environment, with as good or better performance than OPC concrete – no freeze/thaw damage, no scaling, edge retention – NO DAMAGE

Recommendations: Carbonation

- Carbonation may be a concern for all ACMs used in lowcover reinforced concrete subject to moderate humidity conditions.
 - Of all ACMs considered, a blend of CAC and OPC performed best (not presented here)

OPC out-performed all ACMs, including CAC/OPC blend

 Further studies are needed to assess the influence of carbonation on passivation behavior in reinforced ACM concrete.

Electrochemical tests on carbonated systems are being performed

Questions?

Discussion

Acknowledgement:

